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Analysis of Dielectric Guiding Structures
by the Iterative Eigenfunction Expansion

Method

TOMASZ F. JABLONSKI AND MACIEJ J. SOWINSKI

Abstract —Numerical results demonstrating capabilities of a recently

developed method for determiuiug guided modes of dielectric waveguides

are presented. Apart from aecuraey tests for the single-core waveguides,

examples of the wavelength-selective coupler, the directional coupler with

an adhesive layer, and of the side-pit structure are briefly analyzed. The

theoretical background of the iterative eigenfunction expansion method

(IEEM) and a comprehensive description of the numerical afgontbm are

also given. As it is efficient, higfdy accurate, and versatile, the DIEM
proved to be usefuf in the analysis of various dielectric guidi~ structures.

I. INTRODUCTION

I N ORDER TO achieve certain desirable properties of a

given dielectric waveguide many different shapes, pro-

files, and core configurations have been used or proposed

for use at optical and millimeter-wave frequencies. When

the rigorous vectorial description of the guided modes is

indispensable and the permittivity of the waveguide cross

section, c = ~(xl, X2), is a function without radial symme-

try, there are only a few reasonable methods which can be

used for computation. Among them, in the optical wave-

lengths, varieties of the finite element method [1]-[4] are

most commonly used. They differ mainly in the conditions

imposed on the far-field pattern of the guided mode. For

the millimeter-wave structures the finite difference method

is preferred by the’ authors [5], [6]. Apart from these two

dominant methods the following ones are also available:

the domain integral equation method [7], the alteration

formulas method [8], and the effective cross section method

[9].

In each of these methods one stage requires considerable

computational effort, viz. that in which the waveguide

geometry is coded into the set of algebraic equations or

into the solution of the auxiliary structure. Admittedly,

due to extensive information encoded in the matrix coeffi-

cients, we can obtain all the guided modes of a given

stiucture, but very often we are interested in only a few of

them.
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In this paper some capabilities of a new method for

solving boundary eigenproblems are presented. Efficiency

and potentialities for finding the guided modes of a wide

class of dielectric waveguides make the method, in our

opinion, complementary to those mentioned above. Here,

in the method called the iterative eigenfunction expansion

method (IEEM) [10], each eigensolution of the problem is

sought for in the iterative process as an expansion in the

basis consisting of the eigenfunctions of some known

operator. Roughly speaking, the operator which corre-

sponds to the given eigenproblem is decomposed into two

parts. The first (main) part yields the basis for the expan-

sion of the solution and the second is considered as the

perturbation of the first one. In the case of the waveguide

problem this (not necessarily small) perturbation repre-

sents nonhomogeneity of the refractive index in the core’s

cross section with respect to the homogeneous neighbor-

hood represented by the first main part of the decomposi-

tion. Such an approach allows the computation of modes

of a wide class of dielectric waveguides by a single numeri-

cal realization of the method. Moreover, ‘“ algebraization”

of the problem is avoided and thus the first guided modes

of more complicated dielectric structures can be analyzed

without any essential limitation.

II. THEORY

A. General Description of the IEEM

Let the boundary eigenproblem be given as follows:

(T-~2)u=0 (1)

represented by the operator T acting in a’ suitably chosen

Hilbert space .%’. In order to apply the IEEM to solve (1)

it is necessary to decompose T into two parts:

T=~--~

such that L has a known discrete spectrum

{(~~)~.1} with eigenfunctions (e~)~=l given by

(lL-A~)e~=O, m=l,2,3, . . . .

These eigenfunctions should form the basis in %’

(2)

U(L) =

(3)

(best of

all an orthogonal one). In the decomposition (2) it is

desirable that the (unbounded) opetator F be relatively
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compact with respect to IL, meaning that

F(lL- p)-’ (4)

is the compact operator foT all PG u(L).

If the above conditions are satisfied the solutions u, ~ 2

of (1) can be obtained by the iterative process called the

iterative eigenfunction expansion method (IEEM). Keep-

ing in mind that (1) is equivalent to

(L-p’) u=ffu (5)

the loop of the IEEM consists in the following:

a) To find u. —the n th approximation to u — we solve

the nonhomogeneous equation for ~. (with u._ ~ and ~._ ~

known from the previous step):

(L-/l:_ J*n=Fun_,. (6)

The solution of (6) always exists, since ~j_ ~@ u(L). Using

K-eigenfunctions expansion we obtain ~. in the form

m

with coefficients C; in the orthonormal

given as

Here (., o)% denotes the scalar product in

put

un = I14J.II;”4. = ~We~
m

(7)

basis (em)~=l

(8)

.%. We finally

(9)

where the norm of t). is found from the Parseval equality:

Il+nll$e=zlwz (lo)
m

and the normalized coefficients of u. are

D;= II+J>l.C:. (11)

b) In order to obtain ~., the new approximation to ~,

we substitute u. into the following formula, which follows

from (l), (9), (2), and (6):

k’=(Tun,u .)%

‘~8~-l+(F(ll+.ll~” u.-l-u.)u .)@- (12)

Equation (12) has the computationally convenient form

p:= /3:- ,

+ ~{(An–~~2_1) lDj12– D~. (Fu~, em)&}. (13)
m

P;@ o(IL) ancl UO such that F UO# O are the necessary

conditions for the initial approximation.

B. Application of the IEEM to the Dielectric Waveguide

Problem

The IEEM has been applied to solve the propagation

eigenproblem for guided modes of the dielectric waveguide

which is homogeneous along the direction of propagation

and possesses arbitrary cross section. Arbitrariness has to

do with the shape and number of cores as well as with

their refractive index profiles.

The unknown transversal magnetic vector field H. of

the guided mode and its propagation constant ~ satisfy

the following boundary eigenproblem (factor e ‘(~z – “~) is

suppressed throughout):

+f-1(x){v4c(x) x(vlx H1)}–~2H1=0

((6+) -l(VIXH~)-(E-)-l( V1XH;))18p=0

HA vanishes at infinity. (14a)

Here P is the cross section of the circular cladding of the

waveguide, x G R 2 ~ P; the superscripts + and – denote

the interior and the exterior of P, respectively; k’ = LJzp(~,

where p is the permeability of the waveguide medium; and

COis the permittivity of the vacuum. The relative (complex)

permittivity function c(x): R 2 + C is assumed to satisfy

the following conditions:

(~P+~s(x) XEP
c(x) =

1 XGR2– P

s= (Jsic P diam S << diam P = 2. r, (14b)
,=1

where S is an arbitrarily shaped cross section of the cores

and the normalized refractive index profile of the cores

S(X) belongs to the local Sobolev space H;(S )— the com-

pletion of the space of smooth functions with compact

support C~(S) in the norm [11]:

11”11:=z Iwlli’(s)> a= (CYl, a’).
Ial < m

This means that the profile function s(x) vanishes outside

the core region S which is embedded into the relatively

large homogeneous cladding P with CP = const. Moreover,

S(X) is square integrable over S together with its deriva-

tives (in the distribution sense) up to the second order. The

above assumptions are quite general and a wide class of

dielectric structures, including single-core and multicore

and step-index and gradient-index waveguides, can be

represented by the function c(x) defined in (14b).

The operator T corresponding to the boundary problem

((14a) and (14b)) is defined in the Hilbert space M of

square integrable complex-valued vector functions defined

on P:

%’:=L2(P)8C2 (15)

with the scalar product

U,7JG.M’; U=[ul, u,]; u= [U1, L12]. (16)
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The unbounded operator T has the form

Tu:=v; u+k2cPu

+k2c,(x)u +c-l(x). {v~c,(x)X(vl XU)} (17a)

with domain D(T) chosen as

D(lr):={je H;(P):

~~C2downtodP,~18p=O~ 86.22. (17b)

Each component of u = D(T) belongs to the domain of the

so-called Dirichlet Laplacian [11] acting in L*(P) and thus

is equal to zero at the edge of the circle P. Such a choice of

D(T) provides a good correspondence of the operator T to

the problem (14), since it is well known that guided modes

—the eigensolutions of (14)—decay exponentially outside

the cores region.

It has been proved in [12] that the operator T defined by

(17a) and (17b) can be decomposed in such a way that the

IEEM applicability conditions (2), (3), and (4) are satis-

fied. Indeed, in the case considered,

L:=v; +k2cP D(K) =D(u) (18)

is the Dirichlet Laplacian on the circle P. It is well known

that L is a self-adjoint operator with the following discrete

spectrum:

u(L) ={ Am GR:Am=k26p–p:}

where m=(v, p), v= 0 ,1,2,..., p=l,2,3, ”..,

are such that J,( PUP”rP) = O, .lV being the Bessel

of the first kind of order v. The eigenfunctions

(19)

and pVP

function

em of L

form the orthonormal basis in .%’ and eVP= [e~P, e~P] are

such that

sin(v$)
e

( )“(COS(V4)
t = e~P(r, @) = B,;l”.lr p.Pr
w i=l,2

(20)

where

B,K = rP.Jy+l(pPP. rp) o

{

(7r)’/2,
:’:. (21)

(Tr/2)’/2 9

The second part of the decomposition (2) is defined as

!FuI= –k2c,(x)u –c(x)-l. {vl~,(x)X(vl Xu)}

D(F) = D(T). (22)

It is worth noting that the choice of the operator U- in the

decomposition (2) of the operator T determines the basis

which is next used in the iterative process. In the case

considered, the Dirichlet Laplacian (18) on the circle P

provides eigenfunctions (20) which can be easily com-

puted, and for simplicity this choice has been made in the
present paper, The other choices of IL are also possible,

provided the IEEM applicability conditions (3) and (4) are

satisfied.

Operator E maps D(T) into functions with support

contained in the core region S and represents the guidance

abilities of the considered structure. In general, F is not

65

symmetric in 3?’. From the relative compactness (4) of F

with respect to L, useful information concerning certai K1

features of T can be inferred. T possesses a discrete

spectrum and its eigenfunctions form the proper basis in

.% (the Riesz basis—not necessarily the orthogonal one).

Moreover, if IF is symmetric, then T is self-adjoint (e.g.,,!’

is symmetric under the assumptions of weak guidance and

the reality of the c(x) function).

C. Numerical Algorithm

IEEM can be easily transformed into a simple and

inexpensive numerical algorithm. The only noticeable task

for a computer is to evaluate .% scalar products in (8),

which by virtue of (16) and (14b) reduce to integrals of the

form

over the core region S only. Integration is carried out by

the Gauss method with integration points located in the

smallest sector, say rl < r < r2, +1 < @<02, containing the

domain S of the cores. Values of the eigenfunctions e,.

and of the profile function (,(x) together with their de-

rivatives are only computed once in the integration points,

before entering the main loop of the IEEM. This fact

makes it possible to reduce the crucial steps of the loop,

namely (8), (10), and (13), to simple summing up processes.

It is worth noting that for a fixed circle P eigenfunctions

em and eigenvalues A ~ are the same for all waveguidle

geometries. Moreover, alterations of geometry which do

not affect the smallest sector containing S require only a

new computation of the profile values. The above facts

make the algorithm universal and essentially speed up the

computations.

In spite of numerical differentiation under operator F

being avoided, summing up the EH~ values in the integra-

tion points is the most time-consuming process in the

iterative loop. It can be speeded up by ignoring the rekll-

tively small expansion coefficients of H!, according to the

desired accuracy of the final result. Expenses are further’

reduced when the waveguide cross section possesses some

symmetries, In this case, for each given mode, H! and

lFH~ are orthogonal (in the (16) scalar product sense) to

the whole particular subseries of the eigenfunctions e,,,,

and the vector fields H: possess symmetries which are

easily foreseeable. For example, when c,(x) has rectangu-

lar symmetry one can make use of the S-A classification

[13], in which the guided modes split into four orthogonal

subgroups according to the kifids of symmetries possessed.

Numerical expenses are then reduced by a factor of 16,

while for guiding structures with one symmetry axis a
reduction by a factor of four is obtained.

The IEEM most easily finds the fundamental mode of a

given structure. Further modes can also be obtained, pro-

vided they are orthogonal (in the (16) scalar product sense)

to the previously found ones. The choice of the initial

approximation, that is, the field H: and the propagation
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constant PO, determines which mode will be actually ob-

tained. In most cases the choice of H! is crucial because

for arbitrary fl~ = [k2cP, k2~m=] Hj mainly depends on

F(H! ) and the proper quantity of F: is next determined
by Hi in the first iteration, however, close to the cutoff

frequency, when [](il- – ~2) - Ill> becomes large, it is suit-

able to put # = k2cP.

It seems’ to us that the convergence of the IEEM follows

from the k. compactness of E in the decomposition (2). A

rigorous analytical proof of this fact is not yet available,

but the convergence has been successfully confirmed

numerically and no counterexample has been ever ob-

tained. The change of /3. in the successive” iterations and

deviation of II~~11~ from unity were used as the conver-

gence criteria.

III. NUMErUCAL EXAMPLES

In this section several numerical examples are presented

to show some possibilities of the IEEM. All these examples

have been computed by the single Fortran language pro-

gram on the IBM-PC/XT computer. All the geometries of

the guiding structures considered can be defined by an

appropriate superposition of at most three refractive index

profiles S(p) with elliptical supports of the form

(0, p$zs

where p = (x, y) = R2, a G R‘, and S is an ellipse with

serniaxes bX, bY and center p.= (xO, O). Results are pre-

sented in terms of the following nondimensional parame-

ters:

V=k. bX. /= A=em=–cp
2CP

()~=E-,
k2

p .(,ma-,p)-’ (25)

V and Z being, respectively, the normalized frequency and

propagation constant. The notation of HE;~(HE~~) desig-

nates the particular HE~~ mode for which the dominant

magnetic field is directed in the y(x) direction.

A. Accuracy Tests

Let us recall that the solution of (14a) and (14b) is
obtained as an expansion in the basis of IL eigenfunctions

(cf. (20) and (21)). There are three parameters which can

affect accuracy, namely NV = number of the Bessel func-

tions series with different orders v, NP = maximal p in the

given v series, and rP = radius of P taken for the computa-

tion. Let us call these parameters the v number, the p

number, and the math-clad radius, respectively.

The first accuracy test with respect to the math-clad

radius rp confirmed the proper selection of the domain

D(T) of the operator T defined in (17a) and (17b). Nor-

malized propagation constants Z of the HEII mode of the

circular waveguide with the parabolic profile and A = 0.625

0,30
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:

K’ 0.15

0.10

0.05

0,00

v = 3.0

v = 2.5

/

v = 1.5

0 2 4 s 8 10 12 14 16 la 20

rP

Fig. 1. Normalized propagation constants Z versus the math-clad radius
rP for the HEII mode of the circular waveguide at different V vatues
(bX= bY=1, a=2, A= O.625).

versus rP are shown in Fig. 1 for different V values. It is

gratifying to see that infinity starts from rp = 3 for V

above the monomode range. Larger rp is only needed close

to the cutoff. In most of these cases rp <20 is sufficient to

obtain satisfactory results. For example Z of the TMOI

mode of the considered structure computed by the IEEM

for V= 3.230 with rP = 17 equals 0.16.10-4, and Z of the

HE~l mode for V= 6.1598 with rP = 12 equals 0.12.10-6.

The above-mentioned V values are reported in [14] as the

normalized cutoff frequencies of the TMOI and HE31

modes, respectively. They are computed by the method

specially devised for structures with circular symmetry and

thus can serve as a good reference point. Full plots of the

dispersion curves of the HEII and HEZI modes computed

by the IEEM turned out to be identical with the corre-.,

spending plots presented in [14].

Accuracy tests with respect to the p number NP and the

v number NV give an idea of the extent of the expansion

basis needed for the computation. In general, sufficient NY

increases for greater rp or for stronger radial variation of

the field, while NV depends on the kind of symmetry of the

structure and on the angular variation of the field.

The p number test for the HEII and HE21 modes of the

circular waveguide with a = 200 and A = 0.625 is pre-

sented in Fig. 2. In this example rP = 5 and N. = 2 (there is

no need for greater NY because of the circular symmetry of

the guide). Dispersion curves a, b, c, d correspond to NP =

45, 7, 6, 5, respectively. The curve b of the HEII mode

(computed with NP. N. = 14 eigenfunctions only) is indis-

tinguishable from the curve a in the presented figure.

Close agreement of the plotted curves in the usable part of

monomode range is aiso noticeable.

The elliptical waveguide (bX = 1, bY= 4) with the para-

bolic profile and A = 0.625 has been taken for the v

number test with fixed values rP = 8 and N*= 45. Disper-

sion curves of the HE:I and TMOI modes of this structure

are plotted for different v numbers in Fig. 3. Curves a, b,

c correspond to NV =13, 2, 1, respectively. Again curve b

of the HE~l mode is indistinguishable from curve a, which

is believed to be exact.
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Fig. 2. Dispersion curves of the HEII and HE21 modes of the circular

waveguide for different p numbers. Curves a, b, c, d correspond to
N&= 45, 7, 6, 5, respectively.
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Fig. 3. Dispersion curves of the HEfl and TMOl modes of the elliptical ‘
waveguide ( bx =1, bY = 4) for different v numbers. Curves a, b, c

correspond to NV=13, 2, 1, respectively.

The above tests show that the IEEM is highly effective

when such simple structures as single-core power profile

waveguides with rectangular symmetry are to be analyzed.

For example, in order to compute one point of the exact

curve a in Fig. 3 with an accuracy of 10-4 the IEEM

needs, on an average, five iterations. However, the IEEM

is also applicable to much more complicated dielectric

structures.

B. Wavelength Selective Coupler

Wavelength selective coupling can be obtained by mak-

ing use of dissimilar dispersion characteristic of propa-

gation constants in nonidentical single-mode fibers. Cou-

pled modes analysis has been used in [15] to describe this

phenomenon for step index circular fibers with nonidenti-

cal core radii and A parameters.

In the example presented, the asymmetry of the struc-
ture is enlarged by introducing ellipticity and a power

profile index for one of the cores. The phenomenon is

directly analyzed by evaluating H. of the fundamental

antisymmetric Al mode of a double-core structure with no

rectangular symmetry. Selectivity of the coupling can be

judged by the rapidity of changes of the Al mode power
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w
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i

?.

V= 2.6- V = 2.8

v=z.9- V = 3.1

(c)

Fig. 4. Wavelength-selective coupler ( IX’= 2). (a) Specification of the
structure. (b) Dispersion curves of fundamental modes of the double-
core structure and of individual cores with V normalized to the left
core. Squares denote the estimated fraction q of the Al mode power
carried by the left core. (c) Plots of IH~ I field of the Al mode in the
neighborhood of the balanced power point visualizing selectivity of the
coupling.

distribution over the cores in the neighborhood of the

balanced power point. This point, which is, on the other
hand, the cross point of the fundamental mode dispersion

curves of the individual cores, corresponds to the maximal

power transfer frequency, of the coupler.

Two cases which differ in the right core profiles only

(a’ = 2 and a’= 4) are presented in Figs. 4 and 5. They

show the excellent ability of the IEEM to pick up rapid
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Fig. 5. Wavelength-selective coupler ( a’ = 4). Description the same as
for Fig. 4.

alteration of the field in the neighborhood of the degener-

acy point. They also demonstrate the high sensitivity of the

phenomenon to changes in the fiber parameters.

C. Directional Coupler with an Adhesive Luyer

In practically realizable directional couplers even a thin

layer of the adhesive used for connecting the fibers can

significantly affect the performance of a coupler. Perfect

matching of the adhesive and clad refractive indexes is

impossible because small clad–core index differences are

used in practice.

n
CI=30 A = 0.043928

0 – AS I rmdm

■ - .4A I m.des

v = 2.2

0.30 4
100 125 150 1.75 2.00 2.25 2,50 Z,75 3

d

10

Fig. 6. Directional coupler with adhesive layer. (a) specification of the
structure: A = (cm= – ~,[)/2~c/ = 0.00926; Ag = (n: – cc[)/2cc, =
– 3.59A; AC= (cCf– cP)/2cP = 0,02; 2g = width of an adhesive layer.
(b) Normahzed propagation constants Z of the double-core ASI and
AAl modes versus core separation for adhesive layers with different
width 2g a – no adhesive-layer case; b – with g = 0.1; c – with
g = 0.2.

In the example presented (Fig. 6), the performance of a

coupler consisting of two circular cores and different ad-

hesive layers with n;< CP is analyzed. The layer of width

2g is modeled by the narrow ellipse with bX = g and

bY= 20. The coupling effect can be easily analyzed with

the aid of the S-A mode classification introduced in [13]

for structures possessing rectangular symmetry. The HE#l

mode energy transfer coefficient ~ can be estimated from

the total phase shift A+ between the double-core ASI and

AAl modes (the first modes in the antisymmetric-symmet-

ric and antisymmetric-antisymmetric subgroups) which

causes the coupling effect, that is,

~=0.5c(l–cos A@) (26)

where A@ can be found (via [13, formula (20)]) from the Z

values of these modes for each different core separation.

Three pairs of Z(d) plots for fixed V= 2.2 are presented

in Fig. 6(b). Cases a, b, c correspond to As = O, AE =

– 3.59A and g = 0.1, and Ag = 3.59A and g = 0.2, respec-

tively. Substantial damping of the coupling for thicker

adhesive layers is evident from the figure.

To give a qualitative example, let us consider the sym-

metric directional coupler made from two bent silica-glass

fibers with A = 0.00926, radius of fiber curvature R = 250

mm, and minimum core separation s = 1.9 pm working at

X = 1.3 pm. For the adhesive with ng = 1.42, the energy

transfer coefficient ~, which equals 1 for the no-adhesive-

layer case a, decreases to ~ = 0.68 in the case of b and to

r = 0.25 in the case of c. When A is reduced to A = 0.00023

then A ~ corresponding to the same adhesive increases to
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Ag = – 14.36A and the computation carried out has shown

that ~ can never exceed the value 3.10-3 in this case. In

conclusion, the adhesive with the refractive index signifi-

cantly smaller than the clad index produces a deterioration

of the coupling effect and should not be used in combina-

tion with fibers possessing a small core–cladding index

difference.

D. Side Pit Structure

Degeneracy of the HEII mode of a circular fiber can be

eliminated by introducing two pits in the refractive index

profile, one on each side of the core. The resulting modal

birefringence AB between the HE~l and HE~l modes,

defined as

AB = (L -By)//i (27)

serves then as a valuable measure of the effectiveness of

the side pits. Moreover, when the profile function S(p) of

the structure satisfies the following condition [3]:

JI.:= s(p)dp<O
s

(28)

then both the HEII modes have different positive cutoff

frequencies. A structure which approximates the elliptical

core with two side pits and satisfies (28) has been analyzed

in [3] with respect to the depth of the pits.

In Fig. 7 a canonical example of the side pit structure

with a circular core of height equal to the depth of the pits

is presented. Cases a, b, and c correspond to the condi-

tions 1,>0, l.= O, and 1,<0, respectively. A remarkable

increase of the fundamental mode birefringence AB can be

observed for case c, for which the minimal beat length

reaches the value of 2.4 mm (for A = 0.57pm and n =1.47).

E. Miscellaneous Remarks

Case c of the example discussed above in subsection D

(with Is< O) is of special interest because it shows the

behavior of the IEEM for the case when no eigensolution

with ~ 2> k 2CP(Z > O) exists for a small enough positive V.

The method converges then to the eigensolutions of the

operator T which do not correspond to the modes guided

in the core of the structure. The rate of convergence is then

poor because all the eigenvalues of T are interspersed

within the discrete spectrum of operator L. In case c of the

above example, this tendency appeared even above the

cutoff (precisely at (V, Z) points equal to (1.6, 0.1028) for

the HE:I mode and (1.7, 0.1326) for the HEfl mode).

This trouble can be overcome by “lifting up” the whole

profile of the structure together with its sufficiently large

circular neighborhood (corresponding to the physical clad-

ding) and by including this neighborhood in the profile
function S(p). Such a regukarization makes 1, positive and

restores efficient convergence of the IEEM to the physi-

cally interpretable eigensolutions. However, each iteration

consumes more time because of the increase in the number

of integration points. The lifting up procedure has been

successfully applied to the analysis of deep adhesive layers
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Fig. 7. Canonicaf side pit structure. (a) Specification of the waveguide.
(b) Modal birefnngence AB of the HE~l and HE{I modes for different
core to side pit proportions. Curves a, b, c correspond to the cases:

Z,> O, 1,= O, 1,<0, respectively.

(with Ag up to – 30A) in example discussed above in

subsection C (cf. Fig. 6(a)).

In general, the performance of the IEEM strongly de-

pends on the accuracy with which the eigenfield is

evaluated in the successive iterations. Thus, use of an

accurate integration procedure is a crucial prerequisite for

obtaining high efficiency in more complicated cases.

The effectiveness of the IEEM can be expressed in terms

of the v and p numbers introduced earlier, and the i)

number N,, defined as the average (for a given plot)

number of iterations producing AZ= 1Z. – Z.. II smaller

than 10-5. In the examples presented, these numbers were

NV= 20, NP = 45, N,= (16 and 8) for the Al mode of the

structure with no rectangular symmetry (example in sub-

section B, Figs. 4 and 5), N, =10, NP = 45, N, = 7 for the

example in subsection C, and NV =10, NP = 45, N, = 9 for

the HE:I mode in case c of the example discussed in

subsection D.

IV. CONCLUSIONS

The IEEM has proved its applicability to a wide class of

dielectric structures including multicore waveguides andl

those with one symmetry axis only. To the best knowledge

of the authors, results presented in the examples discussed

in subsections III-B and III-C are new. The method ap-

peared to be especially effective in finding the fundamen-

tal modes of a structure. Further modes can also be
obtained, provided they are -% orthogonal to the ones

previously found and the initial approximation is properly

chosen. Comparison with many recently published results

confirmed the high accuracy and versatility of the method.

Its capability of analyzing structures with complex valuedl

profiles is encouraging with respect to further applications.



70

The authors

and support of

IEEE TRANSACTIONS ON MJCROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 1, JANUARY 1989

ACKNOWLEDGMENT

wish to acknowledge the encouragement

Prof. E. Danicki, the Head of the Depart-

ment. T-hey also wish to thank Prof. J. Maczynsti- and

Prof. P. M. van den Berg for their helpful comments

during the completion of the manuscript.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

C. Yeh, S. B. Dong, and W. Oliver, “Arbitrmily shaped inhomoge-
neous opticaf fiber of integrated opticaf waveguides,” J. Appl.
Phys., vol. 46, pp. 2125-2129, May 1975.
C. Yeh, K. Ha, S. B. Dong, and W. P. Brown, “Single-mode opticaf
wavegnides,” Appl. Opt., vol. 18, pp. 1490-1504, May 1979.
K. Oyamada and ‘r, Okoshi, “ Two-dimensionaf finite-element
method crdculation of propagation characteristic of axially nonsym-
metrical opticaf fibers,” Radio Sci., vol. 17, pp. 109–116, 1982.
C. C. Su, “A combined method for dielectric wavegnides using the
finite-element technique and the surface integraf equations method,”
IEEE Trans. Microwave Theoy Tech., vol. MTT-34, pp. 1140–1146,
Nov. 1986.
E. Schweig and W. B. Bridges, “Computer analysis of dielectric
wavegnides: A finite difference method; IEEE Trans. Microwaue

Theory Tech,, vol. MTT-32, pp. 531-541, May 1984.
K. Bierwirth, N. Shultz, and F. Arndt, “Finite-difference analysis
of rectangular dielectric waveguide structures,” ZEEE Trans. Mi-
crowaue Theory Tech., vol. MTT-34, pp. 1104–1113, Nov. 1986.
J. M. van Splunter, H. Blok, N. H. G. B&en, and M. F. Dane,
“Computational analysis of propagation properties of integrated-
opticsd waveguides using a domain integraf equation,” in Proc.
URSI Int. Symp. E. M. Theory part A, 1986, pp. 321-323.
V. V. Shevchenko, “Alteration formula methods in the theory of
dielectric waveguides and opticaf fibers: (in Russian), Radiotkh.
Eleckron., vol. XXXI, pp. 849-864, May 1986.
E. F. Kuester, “The effective cross-section method for dielectric
waveguides in or on a substrate,” Radio Sci., vol. 19, pp. 1239-1244,
Oct. 1984.
T. F. Jablonski, “Iterative eigenfunction expansion method for
monomode gradient index fibers with arbitrary cross-sections,” in
Proc. URSI Int. Symp. E. M. Theory, part B, 1986, pp. 415–417.
M. Reed and B. Simon, Methods of Modern Mathematical Physics,
vol. 4. New York: Academic Press, 1978.
T. F. Jablonski, “Iterative eigenfunction expansion method for
cylindrical fibers” (in Polish), IFTR Reports, 3/1986.
T. F. B. Jablonski and M. J. A. Sowinski, “Propagation properties
of doublecore opticaf fibers; SPIE vol. 670, Opticaf Fibers and
Their Applications IV (1986), pp. 30-38.
C. C. Su and C. H. Chen, “Calculation of propagation constants
and cutoff frequencies of radially inhomogeneous opticaf fibers,”
IEEE Trans. Microwave Theory Tech., vol. MTT-34, pp. 328-332,
Mar. 1986.

[15] K. Kitayama and Y. Ishida, “Wavelength-selective coupling of
two-core opticaf fiber: application and design,” J. Opt. Sot. Amer.
A, vol. 2, pp. 90-94, Jan. 1985.

Tomasz Jabloisski was born in Bytom, Poland,
on January 21, 1954. He received the M. SC.
degree in mathematical physics with first class
honors from the University of Warsaw, Warsaw,
Poland in 1978.

From 1978 to 1981 he was an assistant at the
University of Warsaw, where he investigated
problems in the spectral theory of operators.
From 1981 to 1983, in the Institute of Telecom-
munication, Warsaw, he worked on app~cations
of the antema arravs theorv. In 1984 he ioined

the Department of Electromagnetic Waves’ Theo~’ of the Insti&e of
Fundamental Technological Research, Warsaw. He is currently complet-
ing his Ph.D. degree on applications of the spectraf theory of operators
for solving electromagnetic boundary problems. At present, he is working
on mathematicrd modeling of propagation in dielectic guiding structures.

Mr. Jablohski is a member of the Association of Polish Electronic
Engineers.

m

Maciej J. Sowinski was born in Warsaw, Poland,
on July 24, 1947. He received the M.S. degree
with first class honors in mathematics from the
Warsaw University of Technology in 1971. In
1972 he joined the Department of Electromag-
netic Waves Theory, Institute of Fundamental
Technological Research, Warsaw, Poland, where
he received the Ph.D. degree in 1980 and is now
an Assistant Professor.

He has been engaged in research on guiding
by metallic waveguides and microwave devices,

dielectric opticaf waveguides, and applications of the null-field method
and the eigenfunction expansion method to field problems. From 1987 to
1988 he was a research fellow in the Laboratory of Electromagnetic
Research, Delft University of Technology, Delft, The Netherlands.

Dr. SowiiMki is a member of the Association of Polish Electronic
Engineers.


