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Analysis of Dielectric Guiding Structures
by the Iterative Eigenfunction Expansion

Method

TOMASZ F. JABLONSKI AND MACIEJ J. SOWINSKI

Abstract —Numerical results demonstrating capabilities of a recently
developed method for determining guided modes of dielectric waveguides
are presented. Apart from accuracy tests for the single-core waveguides,
examples of the wavelength-selective coupler, the directional coupler with
an adhesive layer, and of the side-pit structure are briefly analyzed. The
theoretical background of the iterative eigenfunction expansion method
(IEEM) and a comprehensive description of the numerical algorithm are
also given. As it is efficient, highly accurate, and versatile, the IEEM
proved to be useful in the analysis of various dielectric guiding structures.

1. INTRODUCTION

N ORDER TO achieve certain desirable properties of a

given dielectric waveguide many different shapes, pro-
files, and core configurations have been used or proposed
for use at optical and millimeter-wave frequencies. When
the rigorous vectorial description of the guided modes is
indispensable and the permittivity of the waveguide cross
section, € = e(x,, x,), is a function without radial symme-
try, there are only a few reasonable methods which can be
used for computation. Among them, in the optical wave-
lengths, varieties of the finite element method [1]-[4] are
most commonly used. They differ mainly in the conditions
imposed on the far-field pattern of the guided mode. For
the millimeter-wave structures the finite difference method
is preferred by the authors [5], [6]. Apart from these two
dominant methods the following ones are also available:
the domain integral equation method [7], the alteration
formulas method [8], and the effective cross section method
{91

In each of these methods one stage requires considerable
computational effort, viz. that in which the waveguide
geometry is coded into the set of algebraic equations or
into the solution of the auxiliary structure. Admittedly,
due to extensive information encoded in the matrix coeffi-
cients, we can obtain all the guided modes of a given
structure, but very often we are interested in only a few of
them.
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In this paper some capabilities of a new method for
solving boundary eigenproblems are presented. Efficiency
and potentialities for finding the guided modes of a wide
class of dielectric waveguides make the method, in our
opinion, complementary to those mentioned above. Here,
in the method called the iterative eigenfunction expansion
method (IEEM) [10], each eigensolution of the problem is
sought for in the iterative process as an expansion in the
basis consisting of the eigenfunctions of some known
operator. Roughly speaking, the operator which corre-
sponds to the given eigenproblem is decomposed into two
parts. The first (main) part yields the basis for the expan-
sion of the solution and the second is considered as the
perturbation of the first one. In the case of the waveguide
problem this (not necessarily small) perturbation repre-
sents nonhomogeneity of the refractive index in the core’s
cross section with respect to the homogeneous neighbor-
hood represented by the first main part of the decomposi-
tion. Such an approach allows the computation of modes
of a wide class of dielectric waveguides by a single numeri-
cal realization of the method. Moreover, “algebraization”
of the problem is avoided and thus the first guided modes
of more complicated dielectric structures can be analyzed
without any essential limitation,

II. THEORY
A. General Description of the IEEM
Let the boundary eigenproblem be given as follows:

(T-B2)u=0 M

represented by the operator T acting in a suitably chosen
Hilbert space 5#. In order to apply the IEEM to solve (1)
it is necessary to decompose T into two parts:

T=L-F

(2)

such that L has a known discrete spectrum o(L)=
{(A\,,)% .1} with eigenfunctions (e, )., given by

(L—A,)e, =0, m=1,23,---. (3)

These eigenfunctions should form the basis in 5# (best of
all an orthogonal one). In the decomposition (2) it is
desirable that the (unbounded) operator F be relatively
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compact with respect to I, meaning that

F(L—p)™"
is the compact operator for all p & o(L).
If the above conditions are satisfied the solutions u, 8?
of (1) can be obtained by the iterative process called the
iterative eigenfunction expansion method (IEEM). Keep-
ing in mind that (1) is equivalent to

(L—B*)u=Fu
the loop of the IEEM consists in the following:
a) To find u,—the nth approximation to u—we solve

the nonhomogeneous equation for ¢, (with u, , and 8,_;
known from the previous step):

(ﬂ-*:an—l)\bn=|F“n—1- (6)

The solution of (6) always exists, since B2 ; & o(L). Using
L-eigenfunctions expansion we obtain ¢, in the form

¥, =2 Cren

(4)

(5)

(7)

with coefficients C;; in the orthonormal basis (e,,)%_;
given as

n (":un—l’em)f
Cm= ——)\——-2——'

m~ Pn-1

(8)

Here (-, -), denotes the scalar product in 5. We finally
put

9)
where the norm of ¢, is found from the Parseval equality:

a5 = LICaI? (10)

u, =l ¥, = X Dre,,

and the normalized coefficients of u, are

Dy =1l Con- (11)

b) In order to obtain §,, the new approximation to B,
we substitute ,, into the following formula, which follows
from (1), (9), (2), and (6):

an = (-n_un’ un).?f
=18n2—1+(":(”\l/n”.}}'un—1_un)’un)‘;f' (12)
Equation (12) has the computationally convenient form

p2=

+ > {(A,,=BL)IDI> =Dy (Fu,.e,) ). (13)

B¢ o(l) and u, such that Fu,#0 are the necessary
conditions for the initial approximation.

B. Application of the IEEM to the Dielectric Waveguide
Problem

The TEEM has been applied to solve the propagation
eigenproblem for guided modes of the dielectric waveguide
which is homogeneous along the direction of propagation
and possesses arbitrary cross section. Arbitrariness has to

do with the shape and number of cores as well as with
their refractive index profiles.

The unknown transversal magnetic vector field H, of
the guided mode and its propagation constant 8 satisfy
the following boundary eigenproblem (factor e'(f7~ %9 js
suppressed throughout):

VIH, +k%(x)H,
+£_1(x){Vl€(x)X(Vl XHJ.)}__BzHJ_ =0
(HI"HI)IaP=O (VLHI-VJ.'HI)Lap:O

{(€+)_1(V_L XHir)_(f_)_l(VL XHI)}‘9P=0
(14a)

Here P is the cross section of the circular cladding of the
waveguide, x € R2 D P; the superscripts + and — denote
the interior and the exterior of P, respectively; k2 = w’ue,,
where p is the permeability of the waveguide medium; and
€, is the permittivity of the vacuum. The relative (complex)
permittivity function e(x): R? > C is assumed to satisfy
the following conditions:

(x) {;pﬂs(x)

H , vanishes at infinity.

xel
xeRZ-P

€ELX)=

€ = const €,(x) = (€max —€p)5(x) € HF(S)
J

s=Uscp diam S < diam P =2-r, (14b)
1=1

where S is an arbitrarily shaped cross section of the cores
and the normalized refractive index profile of the cores
s(x) belongs to the local Sobolev space HZ(S)—the com-
pletion of the space of smooth functions with compact
support C5°(S) in the norm [11]:

Ilm =X D%z

laj < m

a= (“1a‘12)-

This means that the profile function s(x) vanishes outside
the core region S which is embedded into the relatively
large homogeneous cladding P with €, = const. Moreover,
s(x) is square integrable over S together with its deriva-
tives (in the distribution sense) up to the second order. The
above assumptions are quite general and a wide class of
dielectric structures, including single-core and multicore
and step-index and gradient-index waveguides, can be
represented by the function e(x) defined in (14b).

The operator T corresponding to the boundary problem
((14a) and (14b)) is defined in the Hilbert space J# of
square integrable complex-valued vector functions defined
on P:

#=L*(P)®C? (15)

with the scalar product

(10)ro= [ 2 () =

u,vE N,

2

Z (u,, U,) L2(P)s

u=lu.u,]; v=[v,0,]. (16)
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The unbounded operator T has the form
Tu=v2u+k’%pu
+ k% (x)u+e H(x) {vioe(x)X (v, xu)} (17a)
with domain D(T) chosen as :
D(T) = { f e Hy(P):
feC*downtodP, f,,=0}®C% (17b)

Each component of u € D(T) belongs to the domain of the
so-called Dirichlet Laplacian [11] acting in L*(P) and thus
is equal to zero at the edge of the circle P. Such a choice of
D(T) provides a good correspondence of the operator T to
the problem (14), since it is well known that guided modes
—the eigensolutions of (14)—decay exponentially outside
the cores region.

It has been proved in [12] that the operator T defined by
(17a) and (17b) can be decomposed in such a way that the
IEEM applicability conditions (2), (3), and (4) are satis-
fied. Indeed, in the case considered,

D(L) = D(T) (18)

is the Dirichlet Laplacian on the circle P. It is well known
that L is a self-adjoint operator with the following discrete
spectrum:

L=v2+k%,

o(L) = {N,E€R: N, =k%,— p2} (19)

where m=(v,p), v=0,1,2,---, p=123,---, and p,,
are such that J,(p,, rp) =0, J, being the Bessel function
of the first kind of order ». The eigenfunctions e,, of L
form the orthonormal basis in # and e,, = [e,l,”, e,?#] are
such that

sin(v¢)

cos(vo) i=1,1

b= e (r.8) = B0 )|
(20)

where
(m)"?,

(m/2)"2,

The second part of the decomposition (2) is defined as

Fu:=—kZ%, (x)u—e(x)"" {Vles(x)x‘(vl Xu))
D(F)=D(T). (22)

It is worth noting that the choice of the operator L in the
decomposition (2) of the operator T determines the basis
which is next used in the iterative process. In the case
considered, the Dirichlet Laplacian (18) on the circle P
provides eigenfunctions (20) which can be easily com-
puted, and for simplicity this choice has been made in the
present paper. The other choices of L are also possible,
provided the IEEM applicability conditions (3) and (4) are
satisfied.

Operator F maps D(T) into functions with support
contained in the core region S and represents the guidance
abilities of the considered structure. In general, F is not

7=0 )

va,= rP.JlH-l(pvp,‘rP)' {
r>0
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symmetric in 5. From the relative compactness (4) of
with respect to L, useful information concerning certain
features of T can be inferred. T possesses a discrete
spectrum and its eigenfunctions form the proper basis in
H (the Riesz basis—not necessarily the orthogonal one).
Moreover, if F is symmetric, then T is self-adjoint (e.g., F
is symmetric under the assumptions of weak guidance and
the reality of the e(x) function).

C. Numerical Algorithm

IEEM can be easily transformed into a simple and
inexpensive numerical algorithm. The only noticeable task
for a computer is to evaluate 5 scalar products in (8),
which by virtue of (16) and (14b) reduce to integrals of the
form

J(®HL) elds,  i=1,2 (23)
N

over the core region S only. Integration is carried out by
the Gauss method with integration points located in the
smallest sector, say 7, <r <r,, ¢; < ¢ < ¢,, containing the
domain S of the cores. Values of the eigenfunctions e,
and of the profile function ¢ (x) together with their de-
rivatives are only computed once in the integration points,
before entering the main loop of the IEEM. This fact
makes it possible to reduce the crucial steps of the loop,
namely (8), (10), and (13), to simple summing up processes.
It is worth noting that for a fixed circle P eigenfunctions
e, and eigenvalues A, are the same for all waveguide
geometries. Moreover, alterations of geometry which do
not affect the smallest sector containing S require only a
new computation of the profile values. The above facts
make the algorithm universal and essentially speed up the
computations.

In spite of numerical differentiation under operator F
being avoided, summing up the FH? values in the integra-
tion points is the most time-consuming process in the
iterative loop. It can be speeded up by ignoring the rela-
tively small expansion coefficients of H’}, according to the
desired accuracy of the final result. Expenses are further -
reduced when the waveguide cross section possesses some
symmetries. In this case, for each given mode, H and
FH” are orthogonal (in the (16) scalar product sense) to
the whole particular subseries of the eigenfunctions e,
and the vector fields H" possess symmetries which are
easily foreseeable. For example, when ¢ (x) has rectangu-
lar symmetry one can make use of the S—A classification
[13], in which the guided modes split into four orthogonal
subgroups according to the kinds of symmetries possessed.
Numerical expenses are then reduced by a factor of 16,
while for guiding structures with one symmetry axis d
reduction by a factor of four is obtained.

The ITEEM most easily finds the fundamental mode of a
given structure. Further modes can also be obtained, pro-
vided they are orthogonal (in the (16) scalar product sense)
to the previously found ones. The choice of the initial
approximation, that is, the field H9 and the propagation
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constant B, determines which mode will be actually ob-
tained. In most cases the choice of H? is crucial because
for arbitrary BZ €[k%p, k%] H: mainly depends on
F(H?) and the proper quantity of B is next determined
by H! in the first iteration, however, close to the cutoff
frequency, when |[(L — 82)!||, becomes large, it is suit-
able to put B¢ =k’%,.

It seems to us that the convergence of the IEEM follows
from the L. compactness of F in the decomposition (2). A
rigorous analytical proof of this fact is not yet available,
but the convergence has been successfully confirmed
numerically and no counterexample has been ever ob-
tained. The change of B, in the successive iterations and
deviation of ||, » from unity were used as the conver-
gence criteria.

ITI. NUMERICAL EXAMPLES

In this section several numerical examples are presented
to show some possibilities of the IEEM. All these examples
have been computed by the single Fortran language pro-
gram on the IBM-PC/XT computer. All the geometries of
the guiding structures considered can be defined by an
appropriate superposition of at most three refractive index
profiles s( p) with elliptical supports of the form

x=x\2 [y \* “
s(p) = 1*{( bxo) +(Z;)} > PSS (24)
0, PES

where p=(x, y) €R? a€R™, and S is an ellipse with
semiaxes b,, b, and center pg=(x,,0). Results are pre-
sented in terms of the following nondimensional parame-
ters:

€max — €p

A=

V=k-b e ..—€p

z- (—f——) () (23)

V and Z being, respectively, the normalized frequency and
propagation constant. The notation of HE), (HE? ) desig-
nates the particular HE,,, mode for which the dominant
magnetic field is directed in the y(x) direction.

2ep

A. Accuracy Tests

Let us recall that the solution of (14a) and (14b) is
obtained as an expansion in the basis of L eigenfunctions
(cf. (20) and (21)). There are three parameters which can
affect accuracy, namely N, =number of the Bessel func-
tions series with different orders », N, = maximal p in the
given p series, and r, = radius of P taken for the computa-
tion. Let us call these parameters the » number, the g
number, and the math-clad radius, respectively.

The first accuracy test with respect to the math-clad
radius r, confirmed the proper selection of the domain
D(T) of the operator T defined in (17a) and (17b). Nor-
malized propagation constants Z of the HE,; mode of the
circular waveguide with the parabolic profile and A = 0.625

8 10 12 14 18 18 20
Tp
Fig. 1. Normalized propagation constants Z versus the math-clad radius

rp for the HE;; mode of the circular waveguide at different V' values
(b,=b,=1, a=2, A=0.625).

versus rp are shown in Fig. 1 for different V' values. It is
gratifying to see that infinity starts from r,=3 for V
above the monomode range. Larger r, is only needed close
to the cutoff. In most of these cases r, < 20 is sufficient to
obtain satisfactory results. For example Z of the TM
mode of the considered structure computed by the IEEM
for V'=3.230 with r, =17 equals 0.16-107%, and Z of the
HE,;, mode for V' =6.1598 with r, =12 equals 0.12-107¢.
The above-mentioned V' values are reported in [14] as the
normalized cutoff frequencies of the TM; and HEj;
modes, respectively. They are computed by the method
specially devised for structures with circular symmetry and
thus can serve as a good reference point. Full plots of the
dispersion curves of the HE,;, and HE,; modes computed
by the IEEM turned out to be identical with the corre--_
sponding plots presented in [14].

Accuracy tests with respect to the p number N, and the
v number N, give an idea of the extent of the expansion
basis needed for the computation. In general, sufficient N,
increases for greater r, or for stronger radial variation of
the field, while N, depends on the kind of symmetry of the
structure and on the angular variation of the field.

The p number test for the HE,; and HE,, modes of the
circular waveguide with a=200 and A=0.625 is pre-
sented in Fig. 2. In this example r, =5 and N, = 2 (there is
no need for greater N, because of the circular symmetry of
the guide). Dispersion curves a, b, ¢, d correspond to N, =
45, 7, 6, 5, respectively. The curve b of the HE;; mode
(computed with N,-N, =14 eigenfunctions only) is indis-
tinguishable from the curve @ in the presented figure.
Close agreement of the plotted curves in the usable part of
monomode range is also noticeable.

The elliptical waveguide (b, =1, b, =4) with the para-
bolic profile and A =0.625 has been taken for the »
number test with fixed values r, =8 and N, = 45. Disper-
sion curves of the HE}; and TM, modes of this structure
are plotted for different » numbers in Fig. 3. Curves a, b,
¢ correspond to N, =13, 2, 1, respectively. Again curve b
of the HEJ; mode is indistinguishable from curve a, which
is believed to be exact.
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Fig. 2. Dispersion curves of the HE,, and HE,, modes of the circular
waveguide for different p numbers. Curves a,b,c,d correspond to
N, =45,1, 6, 5, respectively.
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Fig. 3. Dispersion curves of the HE}, and TM; modes of the elliptical ’
waveguide (b, =1, by =4) for different v numbers. Curves a,b,c
correspond to N, =13, 2, 1, respectively.

The above tests show that the IEEM is highly effective
when such simple structures as single-core power profile
waveguides with rectangular symmetry are to be analyzed.
For example, in order to compute one point of the exact
curve a in Fig. 3 with an accuracy of 10™* the IEEM
needs, on an average, five iterations. However, the IEEM
is also applicable to much more complicated dielectric
structures.

B. Wavelength Selective Coupler

Wavelength selective coupling can be obtained by mak-
ing use of dissimilar dispersion characteristic of propa-
gation constants in nonidentical single-mode fibers. Cou-
pled modes analysis has been used in [15] to describe this
phenomenon for step index circular fibers with nonidenti-
cal core radii and A parameters.

In the example presented, the asymmetry of the struc-
ture 15 enlarged by introducing ellipticity and a power
profile index for one of the cores. The phenomenon is
directly analyzed by evaluating H, of the fundamental
antisymmetric A; mode of a double-core structure with no
rectangular symmetry. Selectivity of the coupling can be
judged by the rapidity of changes of the A; mode power
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Fig. 4. Wavelength-selective coupler (a"=12). (a) Specification of the
structure. (b) Dispersion curves of fundamental modes of the double-
core structure and of individual cores with ¥ normalized to the left
core. Squares denote the estimated fraction 5 of the A; mode power
carried by the left core. (¢) Plots of |H | | field of the A; mode in the
neighborhood of the balanced power point visualizing selectivity of the
coupling.

distribution over the cores in the neighborhood of the
balanced power point. This point, which is, on the other
hand, the cross point of the fundamental mode dispersion
curves of the individual cores, corresponds to the maximal
power transfer frequency of the coupler.

Two cases which differ in the right core profiles only
(a"=2 and &’ =4) are presented in Figs. 4 and 5. They
show the excellent ability of the IEEM to pick up rapid
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Fig. 5. Wavelength-selective coupler («” = 4). Description the same as
for Fig. 4.

alteration of the field in the neighborhood of the degener-
acy point. They also demonstrate the high sensitivity of the
phenomenon to changes in the fiber parameters.

C. Directional Coupler with an Adhesive Layer

In practically realizable directional couplers even a thin
layer of the adhesive used for connecting the fibers can
significantly affect the performance of a coupler. Perfect
matching of the adhesive and clad refractive indexes is
impossible because small clad—core index differences are
used in practice.

-1 g Ty
r T T — T TL —7T T T + 1
-8 -8 -4 -2 0 2 4 [ 8
X
(@
0.52 ¥
050 | -
X i/t
048 -
o = 30 4 = 0.00926
3 048 1 b
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D/ - [n} AS d
0.42 a, 1 modes
B - AA{| modes
0.40 ¢
VvV =22
0.38 — e T T r
100 125 150 176 200 225 250 275 3.00

Fig. 6. Directional coupler with adhesive layer. (a) specification of the
structure: A = (€., — €,/)/2€, = 0.00926; A, = (n§ —€,)/2¢,=
—3.597; A = (¢, —¢€p)/2¢p =0.02; 2g = width of an adhesive layer.
(b) Normahzed propagation constants Z of the double-core AS; and
AA, modes versus core separation for adhesive layers with different
width 2g: @ — no adhesive-layer case; b — with g=0.1; ¢ ~ with
g=0.2.

In the example presented (Fig. 6), the performance of a
coupler consisting of two circular cores and different ad-
hesive layers with né < €p is analyzed. The layer of width
2g is modeled by the narrow ellipse with b =g and
b, =20. The coupling effect can be easily analyzed with
the aid of the S—-A mode classification introduced in [13]
for structures possessing rectangular symmetry. The HE};
mode energy transfer coefficient 7 can be estimated from
the total phase shift A¢ between the double-core AS, and
AA, modes (the first modes in the antisymmetric—symmet-
ric and antisymmetric~antisymmetric subgroups) which
causes the coupling effect, that is,

7=0.5-(1-cosA¢) (26)

where A¢ can be found (via [13, formula (20)]) from the Z
values of these modes for each different core separation.
Three pairs of Z(d) plots for fixed V= 2.2 are presented
in Fig. 6(b). Cases a, b, ¢ correspond to A, =0, A, =
—3.59A and g=0.1, and A, =3.59A and g=0.2, respec-
tively. Substantial damping of the coupling for thicker
adhesive layers is evident from the figure.

To give a qualitative example, let us consider the sym-
metric directional coupler made from two bent silica-glass
fibers with A = 0.00926, radius of fiber curvature R = 250
mm, and minimum core separation s =1.9 um working at
A =13 um. For the adhesive with n ¢ =142, the energy
transfer coefficient =, which equals 1 for the no-adhesive-
layer case a, decreases to 7= 0.68 in the case of b and to
7=0.25 in the case of c. When A is reduced to A = 0.00023
then A, corresponding to the same adhesive increases to
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A, =—14.36A and the computation carried out has shown
that = can never exceed the value 3-1073 in this case. In
conclusion, the adhesive with the refractive index signifi-
cantly smaller than the clad index produces a deterioration
of the coupling effect and should not be used in combina-
tion with fibers possessing a small core—cladding index
difference.

D. Side Pit Structure

Degeneracy of the HE;; mode of a circular fiber can be
eliminated by introducing two pits in the refractive index
profile, one on each side of the core. The resulting modal
birefringence AB between the HE};, and HE}, modes,
defined as

AB=(B.—B,)/B. (27)

serves then as a valuable measure of the effectiveness of
the side pits. Moreover, when the profile function s( p) of
the structure satisfies the following condition [3]:

1= [s(p)dp<0 (28)
s

then both the HE,; modes have different positive cutoff
frequencies. A structure which approximates the elliptical
core with two side pits and satisfies (28) has been analyzed
in [3] with respect to the depth of the pits.

In Fig. 7 a canonical example of the side pit structure
with a circular core of height equal to the depth of the pits
is presented. Cases a, b, and ¢ correspond to the condi-
tions I.> 0, I, =0, and I, <0, respectively. A remarkable
increase of the fundamental mode birefringence AB can be
observed for case ¢, for which the minimal beat length
reaches the value of 2.4 mm (for A = 0.57 pm and n =1.47).

E. Miscellaneous Remarks

Case ¢ of the example discussed above in subsection D
(with I, <0) is of special interest because it shows the
behavior of the IEEM for the case when no eigensolution
with B2 > k% p(Z > 0) exists for a small enough positive V.
The method converges then to the eigensolutions of the
operator T which do not correspond to the modes guided
in the core of the structure. The rate of convergence is then
poor because all the eigenvalues of T are interspersed
within the discrete spectrum of operator L. In case ¢ of the
above example, this tendency appeared even above the
cutoff (precisely at (V, Z) points equal to (1.6, 0.1028) for
the HE{, mode and (1.7, 0.1326) for the HE{; mode).

This trouble can be overcome by “lifting up” the whole
profile of the structure together with its sufficiently large
circular neighborhood (corresponding to the physical clad-
ding) and by including this neighborhood in the profile
function s( p). Such a regularization makes I positive and
restores efficient convergence of the IEEM to the physi-
cally interpretable eigensolutions. However, each iteration
consumes more time because of the increase in the number
of integration points. The lifting up procedure has been
successfully applied to the analysis of deep adhesive layers
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(with A, up to —30A) in example discussed above in
subsection C (c.f. Fig. 6(a)).

In general, the performance of the IEEM strongly de-
pends on the accuracy with which the eigenfield is
evaluated in the successive iterations. Thus, use of an
accurate integration procedure is a crucial prerequisite for
obtaining high efficiency in more complicated cases.

The effectiveness of the IEEM can be expressed in terms
of the » and p numbers introduced earlier, and the ¢
number N, defined as the average (for a given plot)
number of iterations producing AZ=|Z,— Z,_,| smaller
than 107>, In the examples presented, these numbers were
N, =20, N,=45, N,=(16 and 8) for the A; mode of the
structure with no rectangular symmetry (example in sub-
section B, Figs. 4 and 5), N, =10, N, =45, N,=7 for the
example in subsection C, and N, =10, N, =45, N,=9 for
the HEJ; mode in case ¢ of the example discussed in
subsection D.

IV. CONCLUSIONS

The IEEM has proved its applicability to a wide class of
dielectric structures including multicore waveguides and
those with one symmetry axis only. To the best knowledge
of the authors, results presented in the examples discussed
in subsections III-B and III-C are new. The method ap-
peared to be especially effective in finding the fundamen-
tal modes of a structure. Further modes can also be
obtained, provided they are ¥ orthogonal to the ones
previously found and the initial approximation is properly
chosen. Comparison with many recently published results
confirmed the high accuracy and versatility of the method.
Its capability of analyzing structures with complex valued
profiles is encouraging with respect to further applications.
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